menu MENU
Stéphane Lafortune
Stéphane LafortuneN. Harris McClamroch Professor of Electrical Engineering and Computer ScienceElectrical Engineering and Computer Science
(734) 763-0591 4415 EECS1301 Beal AvenueAnn Arbor, MI 48109-2122
Home > Research > CPS Security

CPS Security

This is the wiki for the NSF SaTC project TWC: Small: Intrusion Detection and Resilience Against Attacks in Cyber and Cyber-Physical Control Systems

NSF award number: CNS-1421122.

PI: Stéphane Lafortune


This project investigates of a novel methodology for analyzing and designing secure cyber and cyber-physical systems that contain feedback control loops and that interact with their environment through a set of potentially vulnerable sensors and actuators. The actuators and sensors can be compromised by a malicious attacker intent on altering the system behavior by corrupting sensor values or actuator commands, thereby enabling or forcing the execution of unsafe behavior. Using a formal model-based approach, the following problems are being investigated: (i) Detection of intrusions that result in compromised system components (sensors or actuators); (ii) Design of remedial control strategies that combat malicious attackers upon detection of intrusion; and (iii) Design of control strategies that are resilient to potential intrusions and prevent damage from being inflicted upon the system. The technical approach being pursued has its foundations in the theories of diagnosability, opacity, and supervisory control of discrete-state event-driven dynamic systems. The research plan to the problems of intrusion detection and resilience against attacks contains a creative blend of these theories with game-theoretic approaches to reactive synthesis problems, in order to capture the dynamic game between the control system (acting as the defender) and the attacker. The goal of the defender is to optimize its trade-off between functionality and vulnerability. Given the prevalence of feedback control loops in cyber and cyber-physical systems, the methodology being developed will impact a large class of technological systems that are of great societal importance.


Journal Papers

Conference Papers

Software Tools

  • Our technique of obfuscation by insertion of fictitious events is implemented in the tool called VEiP.
  • Our technique of obfuscation by edit functions is implemented symbolically in the tool called EdiSyn. EdiSyn is an implementation of the techniques presented in our NFM 2016 paper.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.